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Fluctuation-Dominated Kinetics in the A + B 0 
Reaction Between Immobile Particles 

A. Blumen, 1'3 S. Luding, 1'3 and I. M. Sokolov 1'2'3 

We consider the accumulation of immobile particles landing on a one-dimen- 
sional lattice and annihilating via the A + B ~ 0 bimolecular reaction. Here we 
focus on short-range interactions with cutoff. We investigate through computer 
simulations both the kinetics of the particles' accumulation and also their spatial 
distribution. The relation between the exponents describing the growth of the 
particles' concentration and the correlation length of their distribution shows 
that the kinetics of accumulation is fluctuation-dominated. 
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1. I N T R O D U C T I O N  

The reaction A + B ~ 0 has been investigated extensively in recent years 

following pioneering work (1'2~ which showed that in the diffusion- 
control led regime the behavior  of this reaction does not  obey the classical 

tdnetic scheme. This very basic bimolecular  reaction has been analyzed 
under  several aspects, i.e., for stoichiometric and unstoichiometr ic  initial 

condit ions,  for equal and for unequal  diffusion coefficients, for correlated 
and  for uncorrelated initial  dis t r ibut ions of reactants,  under  the influence of 
external stirring, etc. (3 23) It turns out  that the the reaction's  kinetics often 

depends on such effects and  that overall time development  is in m a n y  cases 

f luctuat ion-dominated.  
In the last few years s i tuat ions under  a steady inflow of reactants have 

at tracted much interest. The salient feature here is that  under  certain condi-  
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tions the reaction never reaches a steady state, in contrast to the classical 
kinetics predictions, so that an ongoing, steady accumulation of particles 
takes place. (9,10,14 16) 

In the case of a steady inflow of particles, only the diffusion-controlled 
reaction was explicitly studied. Paralleling our investigations in refs. 24-26, 
we shall deal here with reactions between immobile particles. Our previous 
investigations were carried out for reaction probabilities which depend 
exponentially on the mutual distance between the reactants. (24 26) Here we 
let the particles react via short-range interactions with cutoff. We consider 
a situation in which the immobile A and B particles are deposited 
continuously and independently on a discrete lattice of side length unity. 
The model corresponds to a variant of the so-called "black-sphere" 
model (27-32/ in which A and B particles whose mutual distance is smaller 
than r o (the so-called reaction radius) react instantaneously and disappear 
from the system. As an example, nearest-neighbor interactions are given by 
having 1 < ro < 2. The black-sphere model is adequate for the description of 
the recombination of Frenkel pairs in a cascade, induced, say, by a proton 
in a crystal. 

Here we shall be interested in the time dependence of the particles' 
densities and in the behavior of the two-particle correlation functions. As 
we shall show, the analysis of the relations between these two quantities 
allows one to determine whether the reaction considered is fluctuation- 
dominated. We study both the time dependence of the reactants' concentra- 
tions and also the correlation functions via direct computer simulations. 
Since the effects of clustering and statistical fluctuations are most important 
in one dimension, we will concentrate on this case only. We deposit A and 
B particles with the rate t /per  lattice site and per unit time; the deposition 
sites are uncorrelated, but we take care that each A deposition is followed 
by a B deposition and vice versa, so that the overall concentrations are 
always equal: nA = nB. We start here by surveying the A + B ~ 0 reactions 
in systems with particle inflow in two special cases, in order to clarify the 
main features of fluctuation-dominated kinetics. 

2. F L U C T U A T I O N - D O M I N A T E D  R E A C T I O N S  IN 
O N E  D I M E N S I O N  

Let us consider the two simplest cases of fluctuation-dominated 
reactions under a steady influx of particles, namely the case of extremely 
short-range interactions (the so-called "vertical annihilation") and also 
diffusion-controlled reactions. For  simplicity we restrict ourselves (in the 
spirit of this paper) to the one-dimensional discrete lattice. 

in the case of extremely short-range interactions (vertical annihilation) 
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the particles are immobile and annihilate only if a particle of type A lands 
on a site occupied by particles of type B and vice versa. In the black-sphere 
model this corresponds to having r0< 1. Hence, in this case reactions 
occurring on different sites are independent, and the problem has a very 
simple analytical solution. Since the deposition rate r/ (per site and unit 
time) is equal for both types of particles and the A and B particles land 
independently at each site, the mean number of A (or B) particles 
deposited at site / i s  ( N A ( t ) ) =  (NB(t ) )=N(t )=rl t .  Note that under the 
conditions considered here, the deposition process obeys Poisson statistics; 
therefore at large times (following the central limit theorem) the distribu- 
tion p(N) of both N a and NB is Gaussian, with the dispersion a being 
given by 

a2= ( NZ(t) ) - ( N a ( t ) ) 2  = ( N2(t) ) - -  ( N B ( / ) )  2 :  N(t) 

As one does not allow the A and B particles to coexist simultaneously 
at one site, the total number No of particles at a site equals IAI, where J = 
NA(t ) -NB(t )  is the difference of the numbers of A and B particles 
deposited at the site. The overall concentration of particles of the same 
kind n(t)equals {(IAI ). Hence 

n(t) = 0 " / ~  1/2 = (~]t/Tg) 1/2 (1) 

which grows algebraically according to n(t) ~ t ~, with e = 1/2. 
Now let us turn to the second limiting case, namely to diffusion- 

controlled reactions, and continue to focus on particles deposited in a 
spatially uncorrelated manner. In this case, according to scaling arguments 
similar to those presented in ref. 3, one may take that all particles inside 
intervals of the order of the correlation length L* a can react with each other. 
Evidently, here the correlation length is simply the diffusion length, 
~('~ (Dt) ~/2, D being the diffusion constant. This means that due to diffu- 
sion and reaction, clusters of A and B particles form, the mean cluster size 
being of the order of the diffusion length. The total number of particles in 
such a cluster is equal to the mean number of excess A or B particles 
landing within a distance 5g of each other during the time t. The last 
quantity, again according to the Gaussian distribution, is proportional 
to the square root of the total number N, of particles deposited inside 
s M =  ( I A [ ) ~  ( N t )  1 / 2 =  (~qt)l/21r The overall concentration is therefore 

n(O ~ M / ~ ~  t~/2s ~"2(t) (2) 

This leads to the time dependence n(t)~ t t/4, a result which is also very 
well supported by more detailed theoretical considerations3 7'9'14'15) 
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Furthermore, note that if the deposition occurs in a different manner, say 
by allowing the A and B particles to land pairwise, with mean mutual 
distance l, the particle number fluctuations will vanish in domains of the 
order of 5r at long times, where ~~ ~> l, so that no accumulation will take 
place. 

The preceding arguments may be generalized to the case of 
uncorrelated deposition when the correlation length has the form 5~( t )~  t •. 
Then the particle concentration grows according to n( t )~  t ~, where c~ and 
/~ obey the relation 

~ = - ~ - -  (3t 

as may be readily verified by substituting ~ ( t )  into Eq. (2). Evidently, the 
diffusion-controlled regime is a special case of Eq. (3) for/~ = 1/2. Further- 
more, the vertical annihilation is also covered by Eq. (3): it corresponds to 

= const ~ t ~ and for it we have indeed c~ = 1/2. Moreover, the fact that 
in a particular instance Eq. (3) is found to hold is a strong indication for 
the reaction being fluctuation-dominated. 

We now turn to the more complex case given by the black-sphere 
model. This model looks very similar to the vertical annihilation. As we 
proceed to show, for it Eq. (3) also holds, but with /~ being in general 
different from either/~ = 1/2 or/3 = 0. This means that black-sphere models 
with immobile particles belong in general to universality classes different 
both from the vertical annihilation and also from the diffusion-controlled 
regimes. In the following sections we consider first the results of the 
numerical simulations; then we analyze the fluctuation-dominated aspects 
of the reaction. 

3. N U M E R I C A L  S I M U L A T I O N S  

The simulations are carried out on a one-dimensional lattice of size L 
with periodic boundary conditions. Because of the discreteness of the 
lattice, only the integer part  of ro, entier(ro), is relevant, and we will denote 
in the following this integer by r 0. A particle landing at a site i can interact 
then with particles on Vo = 2ro + 1 sites, including i. 

For our simulations two algorithms were used: The first one is more 
general and allows one to specify r o arbitrarily; for this it is more time- 
consuming, its computing time growing as n( t ) .L  2. The second one is 
restricted to nearest-neighbor interactions (r o = 1), but is much faster for 
large times and for densities n(t) > 1. At each step of the program we let an 
A and a B particle land on two randomly chosen sites of the chain. Then 
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we'. check each landing site for particles of the opposite type at the Vo 
relevant neighboring sites. This search procedure determines the computa- 
tion time, and here the differences between the algorithms become evident: 
The first algorithm is very general, being suited to calculate reactions in 
arbitrary dimensions and for all given distance-dependent interactions. The 
procedure used here computes the distance from the newly landed particle 
to all particles of the opposite kind; all such particles at a distance less than 
or equal to ro are marked. If any are found, one of them is chosen at 
random and reacts with the newly landed particle. This algorithm is very 
convenient at low particle coverage and in high dimensions. The second 
algorithm only checks the neighboring sites of the newly landed particle 
and picks one (if any) of the particles of opposite kind found there for 
reaction. 

The results of our simulations are given in Figs. 1-4. Figure 1 shows 
the particle density as a function of time. The obvious feature of the results 
is the steady increase of the particle density with time, i.e., the lack of a 
steady-state situation. Shown are the (renormalized) particle densities for 
r0 = l, 5, 10, and 20, each calculated from five realizations of the process. 
In fact the particle density n(t) obeys a simple scaling relation as a function 
of t/ and r0. Namely, the quantity N = v o n  (the mean number of the 
particles in Vo) scales as a function of T=Vorlt (the total number of 
particles created in Vo during time t). From Fig. 1 it is evident that the 
curves scale within the standard deviation of the simulations. Due to this 
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Fig. 1. The particle densities as a function of time for r o =  1 (dashed line), 5 (triangles), 
10 (crosses), and 20 (circles). Each result is the average of five realizations of the process on 
the. linear chains of 1.6 x 104 (for r o = 1 ) to 6.5 x 104 (for r 0 = 20) sites. To highlight the scaling 
behavior,  we plot N vs. T, where N =  yon and T =  Vorlt; see text for details. 
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fact we carry out the further simulations for r 0 = 1 only: this allows us to 
use the second (faster) algorithm for the annihilation procedure and 
therefore to extend our simulations over five orders of magnitude in time, 
as displayed in Fig. 2. Presented is N ( T )  as well as its standard deviation, 
obtained from ten realizations of the process on a chain consisting of 
20,000 sites. By inspection it follows that for long enough times 
(corresponding to T >  1) N ( T )  obeys the power-law form 

N ( T )  ~ T ~ (4) 

A least-squares fit leads for ~ to the value of c~ ~ 0.3. Note that this value 
is intermediate between ~ = 1/2, as found for extremely short-range inter- 
actions, and ~ = 1/4, as displayed by diffusion-controlled reactions. 

In order to further investigate the mechanism underlying these 
findings, we now turn to the correlation functions for particles of different 
kinds, Y(r, t), and of the same kind, X(r, t). These correlation functions 
describe the normalized probabilities of finding at time t a corresponding 
particle at a distance r given that the particle is present at the origin; see 
ref. 24 for details. In Fig. 3 these functions are given at times t = 10, 100, 
1000, and 10,000. The behavior of the curves displays clearly the tendency 
of particles of the same type to form clusters and to segregate from the 
particles of opposite type. We may furthermore introduce a correlation 
length 5r defined, say, as being the distance 5~, where X ( ~ ,  t) = 2 or where 

, i , - .  I . , , i , , , , i  ' ' ' ~ ' " ' 1  ' ' ' 1 ' " ' 1  ' ' ' l ' " r l  ' " 

10 
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1 10 10 2 10 3 10 4 

T 

Fig. 2. The  n o r m a l i z e d  par t ic le  dens i ty  N as  a func t ion  of  T for  r 0 = 1 a n d  q = 1. The  full line 

gives the  resul t  o f  ten  rea l i za t ions  o f  the s i m u l a t i o n  o n  a c h a i n  wi th  20 ,000 lat t ice sites. The  
do t s  ind ica t e  the  s t a n d a r d  dev i a t i on  of  the m e a n  value.  The  d a s h e d  line has  a s lope ct = 0.3, 

i.e., ind ica tes  a n  N ~  T ~ (i.e., n ~  t ") b e h a v i o r  wi th  cr  
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Fig. 3. Disp layed  are the correlat ion funct ions  for like particles, X(r, t) (upper  par t  of  the 
figure), and  for unlike particles, Y(r, t) (lower par t  of the figure), for the t imes t = 10, 102, 103, 
and 104 (from left to right);  see text for details. 

Y(5~, t )=  1/2. A detailed analysis shows that this correlation length also 
grows algebraically with time, following 

~:(t) ~ : (5) 

Furthermore, we find / ~ 0 . 4 ,  which agrees with the previously found 
c~ =0.3 and with Eq. (3). We can also display graphically this finding by 
plotting the correlation functions in rescaled variables. Namely, the 
functions X(r, t) and Y(r, t) scale when drawn as functions of the variable 
rt -p. Figure4 presents the results for X and Y from Fig. 3, now as 

311 . . . .  , . . . .  

2 

0 ~ 
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Fig. 4. The  correlat ion funct ions  of Fig. 3, replot ted as functions of r/t/~ with ~ = 0.4. 
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funct ions of rt -~  As is evident,  within the accuracy of our  numer ica l  
mode l ing  the agreement  between the different curves is very good.  Tha t  
such scaling is found suppor t s  bo th  our  conjecture  on the cor re la t ion  
length behav io r  and  also, because Eq. (3) holds,  our  conclus ion that  the 
reac t ion  kinet ics  in the b lack-space  mode l  is f luc tua t ion-domina ted .  

4. C O N C L U S I O N S  

We have inves t iga ted  numer ica l ly  the A + B ~ 0 reac t ion  between 
immobi le  par t ic les  depos i ted  on a l inear  chain and  annih i la t ing  via short-  
range interact ions.  The kinetics of par t ic le  accumula t ion  is governed  by a 
power  law n ( t ) ~  t ~ with c ~ 0 . 3 0 ,  which differs bo th  f rom the case of 
d i f fus ion-cont ro l led  react ions  and also from the case of ext remely  short-  
range  (vert ical)  annihi la t ion .  The s tudy of  the behav io r  of the cor re la t ion  
funct ions shows tha t  in the course of the reac t ion  clusters are formed. The 
cor re la t ion  length 5 a of such clusters grows accord ing  to L P ( t ) ~  t ~ with 
f l ~ 0 . 4 .  The re la t ion e = ( 1 -  f l)/2 holds  very accura te ly  also in this case, 
under ly ing  the fact tha t  the react ions  cons idered  here are f luctuat ion-  
domina ted .  
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